Roll No							
Roll No.							

Total No. of Questions : 18

Total No. of Pages : 02

B.Tech. (Mechanical Engg.) (2018 & Onwards) (Sem.–1,2) ELECTROMAGNETISM Subject Code : BTPH-103-18 M.Code : 75357

M.Code :

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

Write briefly:

- Q1. From the expression of electric field for a continuous volume charge distribution, prove that $\nabla . E \square \frac{1}{2}$, where symbols have their usual meanings.
- Q2. Derive the Laplace and Poisson's equations.
- Q3. What do you understand by Electric displacement?
- Q4. Give the Physical significance of divergence and curl of static magnetic field.
- Q5. Derive the expression $H \square \frac{1}{6} B \square M$ where symbols have their usual meanings.
- Q6. Mention the importance of Lenz's law in explaining Faraday's law of induction.
- Q7. Derive the continuity equation in terms of volume current density.
- Q8. Differentiate between potential and electromotive force.
- Q9. Write Maxwell's equations in vacuum in their integral form.
- Q10. Differentiate between linear, circular and elliptical polarization.

1 M-75357

(S1)-498

Download all NOTES and PAPERS at StudentSuvidha.com

SECTION-B

Q11. a)	Define Uniqueness theorem for Dirichlet and Newmann boundary conditions.	3
b)	Derive the expression for electrostatic energy of a charge distribution in vacuu terms electric field and comment about its (electrostatic energy) characteristics.	m in 5
Q12. De	erive the expression for potential and electrostatic field due to an electric dipole.	8
Q13. a)	Explain the concept of magnetic vector potential. Under what conditions it can considered as a scalar?	ı be 3
b)	Discuss the process of magnetization and derive the expression for associated bound currents due to magnetization.	5
Q14. a)	Make a comparison between the characteristics of diamagnetic, paramagnetic an ferromagnetic materials.	nd 4
b)	Derive the expression for magnetic field due to a bar magnet.	4
	SECTION-C	
Q15. a)	Derive the expression for energy stored in a magnetic field.	5
b)	How the Ampere's circuital law $\begin{bmatrix} x & B \\ y & D \end{bmatrix}$ was modified for time-dependence electric field.	ent 3
Q16. Sta	ate Poynting's theorem of electromagnetism and prove it.	8
Q17. a)	What do you understand by uniform plane waves, give wave equations in terms of E and B and prove the transverse nature of EM waves.	5
b)	Derive the relation between electric and magnetic fields of an EM wave.	3
~	erive the expressions for Reflection and transmission of EM waves from n-conducting medium-vacuum interface for normal incidence.	а 8

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-75357

(S1)-498

Download all NOTES and PAPERS at StudentSuvidha.com